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Abstract

Conventional pulmonary function tests (PFTs) are important
but costly. Hence, prior research has proposed IoT sensor-
based solutions to facilitate cost-e!cient, at-home PFT. How-
ever, these solutions require the subject to perform maximal
exhalations, a task often challenging without supervision,
compromising test accuracy. In response to this challenge,
this study introduces EasySpiro that, for the "rst time, uses
non-maximal exhalations to measure PFT indicators. This is
challenging since PFT indicators are only de"ned for maxi-
mal exhalations, and there are no guidelines to derive them
from submaximal exhalations. To address that, we observe
that pulmonary de"ciencies a#ect all types of breathing,
where the underlying pulmonary de"ciency should be the
same under di#erent breathing e#orts. Leveraging this in-
sight, we design a reconstruction model to predict the ideal
maximal breathing patterns based on submaximal ones and
utilize these reconstructions for PFT. Furthermore, since
the body dynamics re$ect the exhalation e#ort, we use self-
supervised learning techniques to encode body dynamics
into breathing e#ort representations to guide the reconstruc-
tion process. We integrate these designs into earphones with
microphones to measure breathing patterns and IMUs to
measure body dynamics. We collaborate with a hospital and
develop a dataset from 50 patients with various diseases to
evaluate EasySpiro’s performance, which shows an accurate
prediction of PFT indicators based on non-maximal exhala-
tions with an error rate of 7%. In addition, we open-source
the collected dataset to encourage future research.
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1 Introduction

The pulmonary function test (PFT) is the golden standard
for measuring how well the lungs work and evaluating respi-
ratory function. Conventional PFTs are conducted through
spirometry, where the user is instructed to exhale with their
maximal e#ort for at least six seconds into a medical device
called a spirometer, which examines the air$ow properties
and outputs a set of lung function indicators to characterize
a person’s lung condition [18]. However, because of the high
cost of spirometers (usually > 2,000 USD) and PFT diagnosis,
not all users can a#ord to conduct PFT frequently.

Fortunately, previous works [1, 17, 25, 28, 52, 66] have sig-
ni"cantly reduced the cost of a PFT by replacing spirometers
with IoT sensors. Those works leverage sensing devices such
as earphones and phones to capture the air$ow properties
during a forced exhalation maneuver to achieve similar func-
tionality as a spirometer through audio or posture analysis.
In this way, at-home PFTs can be enabled cost-e!ciently.

Nevertheless, the above work only solved half of the prob-
lem - even if the users have low-cost PFT devices, they still
can hardly perform valid PFTs at home. This is because the
standard PFT requires maximal e#ort breathing maneuvers
(Figure 1(a)), which users cannot perform alone and need
clinicians to teach. Otherwise, low-quality PFT results may
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(a) Traditional PFT (b) EasySpiro

Figure 1: Conducting PFT. (a) Traditional method (b)

EasySpiro.

occur due to submaximal e#ort, making them unusable [18].
In fact, even in a clinical setup, it is essential to ensure the
quality of the test since the rejection rate of PFT can be as
high as 50% [5], due to the challenges in performing the test.
Therefore, multiple PFTmaneuvers are required to guarantee
the usability of the test which is supervised by the clinician.
Furthermore, there are some populations, such as the elderly,
patients with severe heart disease and high blood pressure,
and pregnant people, who are not suggested to perform stan-
dard PFT due to the risk that repeated PFT tests may cause
shortness of breath and fainting, while their lung function
also needs to be assessed properly [43, 55, 59].

In other words, it is quite challenging for users to perform
the standard maximal-e#ort PFT at home alone. However, it
is relatively easy for everyone to perform submaximal exha-
lation, just like casual deep breaths. From this perspective,
we raise a question: can we use the submaximal breathing pat-

terns to infer pulmonary function? A good message based on
our observation is that although the standard PFT is based
on maximal exhalation, medical research has shown that
breathing with less e#ort, even normal breathing, will also
exhibit di#erent characteristics among di#erent pulmonary
conditions [4, 31, 40, 65]. Thus, extracting features from the
breathing patterns of submaximal breathing e#orts can po-
tentially infer pulmonary functions. Inspired by EarSpiro
[66], we use microphones embedded in earphones to col-
lect exhalation sounds as a surrogate for breathing patterns
and use the measured audio patterns to infer indicators of
pulmonary function.

Although it sounds promising, achieving this goal is chal-
lenging. The biggest challenge is modeling the relationship
between pulmonary function and submaximal exhalations.
As discussed above, the pulmonary function indicators are
only de"ned in the context of maximal exhalations [18], and
there are no pulmonary function indication methods for sub-
maximal ones. Our core idea to solve this challenge is that
lung de"ciencies manifest anomalies in both maximal and ca-
sual breathing patterns. Hence, we propose a reconstruction

method to predict the ideal, maximal exhalation patterns
from the sub-optimal ones and use this prediction to esti-
mate lung function. In this way, the lung function estimation
will be based on maximal e#orts, and this is aligned with
the medical standard. Therefore, we design a UNet-based
[45] image-to-image generation model to reconstruct the
maximal exhalation patterns and use the reconstructed ones
for the subsequent lung function indicator prediction.
Notably, in order to reconstruct a consistent maximal ex-

halation pattern based on the submaximal ones, we need
"rst to measure the exhalation e#orts to let the model know
the gaps between the submaximal and maximal maneuvers.
However, there is no explicit de"nition of breathing e#ort or
explicit label for it. Therefore, the second challenge faced by
our design is measuring and encoding the breathing e#ort.
To solve this challenge, we observe that di#erent breath-
ing e#orts will result in di#erent posture dynamics. That
said, we can use earphone-embedded IMUs to characterize
breathing e#ort, and we use the IMU characterizations to
guide the reconstruction process. To solve the issue of the
lack of explicit breathing e#ort labels, we propose to use a
self-supervised contrastive learning scheme to encode the
breathing e#ort. By training an encoder network that can
compare two breathing e#orts, we can encode breathing
e#orts properly. In addition, to increase the representation
ability of our model, we build the breathing e#ort encoder
based on an IMU-based activity recognition model, LIMU-
BERT [69], which is pretrained by large IMU datasets.

One additional challenge is that the breathing patterns and
lung conditions are signi"cantly di#erent among the patients
and healthy populations. Therefore, to develop the above-
mentioned deep-learning models, a fairly large amount of
data from both the patient and healthy population is required.
In this research, we collaborate with a hospital to collect a
dataset containing the exhalation sounds of diverse breathing
e#orts from 50 subjects containing 36 patients with various
diseases. We build and evaluate our system on this dataset.

With the above designs, we present EasySpiro, an earphone-
based PFT solution based on non-maximal exhalations. The
using scenario of EasySpiro is depicted in Figure 1(b). The
earphones are equipped with a pair of microphones to col-
lect exhalation sound and a pair of IMUs to measure posture
dynamics. We build and evaluate our system on our dataset,
and the evaluation result shows an average pulmonary func-
tion indicator error of 7%. We summarize the contributions
of this work as follows:

• We propose EasySpiro, the "rst PFT solution to predict
pulmonary functions based on casual, non-maximal
breathing e#orts, whereas originally, PFT could only
be conducted with a maximal breathing e#ort.
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Figure 2: Overview of EasySpiro.

• We propose a series of techniques to solve a few chal-
lenges, including a spectrum reconstruction model to
predict the ideal maximal exhalation patterns from
the submaximal ones and a breathing e#ort encoding
method based on contrastive learning and pretraining
on large IMU datasets.

• We build EasySpiro on a pair of earphones and collabo-
rate with a hospital to collect a dataset of patients with
various diseases to validate our system.

• We open-source the "rst PFT dataset based on exhala-
tion sounds. The dataset is available at the following
link: https://github.com/ERICXUCHI/EasySpiroDataset.

2 Background

Before we dive into the details of our design, we "rst discuss
the general background of this research. We begin with a
brief introduction of PFTs. Then, we discuss the reason why
we can use breathing patterns to infer pulmonary functions.

2.1 Pulmonary Function Test

PFTs are usually conducted through spirometry, where the
subject exhales into a spirometer, which analyzes the air$ow
properties and outputs pulmonary function indicators. Note
that here, the subjects are required to exert their maximum
e#ort, as fast and hard as they can, to expose most of their
lung restrictions [18]. The exhalation e#ort must be held
for at least six seconds to make sure the air in the lungs is
cleared. Because of the challenge of this maximal exhalation
maneuver, the subjects often feel exhausted and even faint
after the test. Therefore, a clinician must guide the subject
to ensure the PFT quality. The primary outcome of the PFT
is a set of pulmonary function indicators, such as PEF, FVC,
FEV1, and FEV1/FVC, which are representative of di#erent
pulmonary conditions. Please refer to Graham et al. [18] for
the de"nitions of these indicators. The target of this work is
also to estimate these pulmonary function indicators.

2.2 From Casual Breathing Sound to PFT

Previous research has shown the feasibility of using breath-
ing sounds as a surrogate for air$ow speed [2, 17, 28, 66].
This is because when a subject breaths, turbulence will form
in the constrictive portion of the airways, and this turbu-
lence will generate sounds [27]. It has been demonstrated
that the audio properties of the generated air$ow sounds
are correlated with the air$ow speed [15]. Therefore, we
can use the earphone-captured breathing sound to infer the
breathing patterns so as to perform PFTs.
Although the standard PFT requires a maximal exhala-

tion, recent medical research has shown that submaximal
exhalations or even normal breathing can show di#erent
characteristics under di#erent lung conditions [4, 31, 40, 65].
This is because, in patients with impaired lung functions,
their airways are obstructed, which keeps air from moving
in and out of the lungs freely. This will not only limit the
maximal speed that one can exhale with, but also interrupt
the normal breathing routine. For example, compared with a
healthy subject, respiratory disease patients exhale slower
even for normal breathing [35], and it takes a shorter time
for the patients to reach the peak expiratory $ow rate [34].
These works tried to extract consistent indicative metrics
from casual breathing patterns as alternatives for PFTs. How-
ever, due to the heterogeneity of casual breathing and the
limited study population, medical standards or guidelines
are yet to be established. In this work, we wish to use the
earphone-captured casual exhalation audios to conduct PFT,
with the help of advanced machine learning and signal pro-
cessing techniques.

3 System Design

This section elaborates on the details of EasySpiro. First, we
will give an overview of our design. The system diagram is
presented in Figure 2. The design comprises four main mod-
ules that process audio and IMU data cooperatively. In the
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Figure 3: Multiple session spectrograms. (Upper row:

left ear; Lower row: right ear)

!
"
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Figure 4: Multiple session IMU signals. (Upper row: left

ear; Lower row: right ear. Colors represent axes.)

"rst module (Section 3.1), we extract spectral features from
breathing sounds as the foundation of the PFT prediction
using signal-processing techniques. Then, as discussed in
Section 1, we use a reconstructionmethodology to predict the
ideal maximal exhalations to enable PFT that is aligned with
medical guidelines. In this reconstruction process, we use
IMU data to encode the information on the exhalation e#ort
to guide the reconstruction. The rationale behind this design
is that di#erent exhalation e#orts result in di#erent body
dynamics. Encoding this information in the loop hints at the
reconstruction model on the gaps between the submaximal
exhalation and the maximal one. Therefore, we design the
second module (Section 3.2) to encode exhalation e#ort infor-
mation from the IMU data through self-supervised learning
techniques. After that, our third module (Section 3.3) lever-
ages an image transformation model to reconstruct the max-
imal exhalation spectrogram from several arbitrary-e#ort
ones. In the "nal module (Section 3.4), the reconstructed
spectrogram is regarded as an image sample and processed
by a state-of-the-art image processing model for PFT indica-
tor prediction. The details of these modules are discussed in
the subsequent sections.

3.1 Audio Feature Extraction

This module aims to extract su!cient features from breath-
ing sounds to support subsequent modeling. After receiving
the raw breathing audio, the "rst step is to locate the starting
point of exhalation. A straightforward method to do so is
to "nd the loudest part of the audio segment, as a PFT be-
gins with a strong exhalation. However, this cannot work in
some cases with a noisy environment. Fortunately, since we
also attach the IMU sensor to the earphone, the IMU signal
shows signi"cant changes at the starting point of exhalation.
Therefore, we can determine the starting point by analyzing
the amplitude variation in the IMU signal.
Once we identify the starting point, we apply the Short-

Time Fourier Transform (STFT) to extract time-frequency fea-
tures using a Hanning window. However, we face the same
issue of high-dimensional spectrograms as noted in EarSpiro
[66]. To address this, we utilize a Mel Filter Bank to reduce

the dimensionality [49, 74]. To emphasize the low-frequency
components, which contain more informative content than
high-frequency parts, we use a Mel "lter bank with 64 "lters
to process the spectrogram. The parameters for the STFT
and Mel "lter bank are adapted from [73]. Speci"cally, we
extract 12 seconds of raw audio starting from the exhalation
points, using a window size of 64 ms and an overlap of 32
ms between consecutive segments.

Moreover, we observe that due to the low-cost hardware,
the collected breathing sounds are often mixed with the hard-
ware’s internal noises. To address this, we record the ambient
signals in a completely silent environment as a template and
reduce the future recording’s hardware noise by subtracting
this template.
We show "ve sessions of the processed spectrograms in

Figure 3, with e#ort decreasing from left to right. As dis-
cussed in Section 1, we will reconstruct the ideal, maximal-
e#ort exhalation patterns based on these submaximal pat-
terns. However, given their signi"cant heterogeneity because
of the arbitrary breathing e#orts, it is hard for the system
to give a consistent prediction. In the next two sections, we
introduce our approach to achieving a high-quality recon-
struction with the help of IMU data.

3.2 Exhalation E!ort Encoding with IMU

As discussed previously, we use IMU signals to measure and
encode the exhalation e#ort, which guides the reconstruc-
tion process. The basic principle of this idea is that the IMU
readings will display a certain pattern capturing the user’s
level of e#ort. This pattern is characterized by signi"cant
variations in the IMU signal if the user swings a lot during
PFT - a symbol of exhale forcefully. This happening means
that the audio spectrograms that are associated with this
IMU signal should closely resemble that of a maximal ef-
fort. Conversely, a lack of variation suggests a divergence
from maximal e#ort. This understanding aids the model in
identifying the generation gap e#ectively.
The core challenge, however, is how to encode such pat-

terns that represent exhalation e#ort since there is no explicit
label for it. Fortunately, self-supervised learning has shown
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signi"cant promise in handling non-annotated datasets [22].
Therefore, we use self-supervised learning techniques to en-
code the exhalation e#ort. The rationale behind this design
is that although no labels for exhalation e#ort are available,
we know which exhalation e#ort is greater between two ex-
halation maneuvers. This way, we can encode the exhalation
e#ort by training an IMU encoder using contrastive learn-
ing that compares the e#ort level between two exhalation
maneuvers. We present "ve sessions of IMU signals from
one person in Figure 4, with e#ort decreasing from left to
right. We can indicate from this "gure that more exhalation
e#ort results in a larger variation in the IMU data, and this
IMU data can serve as the measurement of the gap of the
reconstruction.

Based on these assumptions, we adopt two self-supervised
learning schemes to process the IMU data. First, we use a
state-of-the-art IMU processing model, LIMU-BERT [69], as
the backbone of our encoder. We pretrain this model on
large IMU datasets [32, 44, 50, 53] using random masking as
recommended in [69]. Second, to encode exhalation e#ort
from IMU data, we design a contrastive learning scheme.
Speci"cally, we randomly select two IMU signals from one
subject, along with their corresponding peak expiratory $ow
(PEF) values, since medical research has shown that the PEFs
can be used to compare exhalation e#ort. The positive and
negative samples in the contrastive learning scheme are
therefore de"ned in Equation 1.

;014; =

{

0 : %���"*1
> %���"*2

1 : %���"*1
< %���"*2

(1)

Each IMU signal is embedded using the pretrained en-
coder model and then passed through several Multilayer
Perceptrons (MLPs) to predict the binary output. By opti-
mizing the Binary Cross Entropy Loss, we can "netune the
pretrained feature extractor, enhancing its ability to capture
e#ort information from our exhalation datasets. With these
two components combined, the encoder can learn su!cient
e#ort-level information and embed it into vectors, improving
the accuracy of the subsequent reconstruction.
Note that in the "netuning stage, the IMU data are un-

dergone similar data augmentation pipeline as discussed in
Section 3.3.1, including random shifting in the time domain
and noise-adding with = ∼ N(0, 0.12) .

3.3 Maximal Exhalation Reconstruction

Given the audio features from the submaximal exhalation
audios and the exhalation e#ort encoding from the IMU data,
in this section, we employ a reconstruction model to predict
the ideal maximal-e#ort breathing patterns. By default, we
use "ve non-maximal exhalations to reconstruct the maximal
exhalation pattern to ensure the quality of the reconstruction.
This is reasonable since, even in a clinical setup, clinicians
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Figure 5: UNet-based reconstruction.

Figure 6: Result of reconstruction. (Left: label; Right:

the reconstruction)

always ask patients to perform multiple trials of PFT to en-
sure the usability of the PFT results [18]. Besides, in our
experiments, we observe that most patients are comfortable
performing these many casual exhalations. Even so, our sys-
tem supports a range of 3-5 exhalations as input with zero
padding. As discussed in Section 6.2.2, EasySpiro can achieve
an acceptable PFT performance even if only three exhala-
tions are provided. The input of the reconstruction model
is a 10-channel image tensor composed of "ve exhalations
with two audio channels.

3.3.1 Data Augmentation. Before developing the reconstruc-
tion model, we use a few data augmentation techniques to
enhance its robustness. First, we shu&e the sequence of the
ten channels of the input to simulate the scenario where
the subject can have any arbitrary sequence when perform-
ing the exhalations. Second, we randomly mask two or four
channels to simulate the case when the subject only provides
three or four exhalations. Third, we randomly shift the spec-
trogram along the time axis to simulate the cases where the
exhalation happens at other time points of the time window.
Finally, we randomly add Gaussian noise to the spectrogram
following = ∼ N(0, 0.052) .



ACM MOBICOM ’25, November 4–8, 2025, Hong Kong, China Xu and Xie et al.

3.3.2 UNet-based Reconstruction Model. We employ a UNet
[45] architecture for our reconstruction model due to its
proven e#ectiveness in image-to-image generation tasks. In
the encoding part of the UNet model, the Mel spectrograms
and IMU signals are processed separately. The UNet’s con-
tracting path only processes the 10-channel spectrograms,
utilizing a series of 3×3 convolutional layers followed bymax
pooling. The previously pretrained feature extractor "rst en-
codes the 10-channel IMU signals, projecting the channels
and sizes to match the output size of the last encoding layer
for the spectrogram. Importantly, we concatenate the IMU
information only at the bottom of the UNet, meaning that
the IMU features are extracted at a high dimension. An al-
ternative approach would involve adjusting the channel and
size of the IMU signals layer by layer and concatenating
them with the encoded spectrogram before each max pool-
ing layer, utilizing di#erent levels of IMU data. However,
given that IMU data typically contains much less informa-
tion than audio data, combining them at each contracting
layer would dilute the information weight, which is not ideal.
Additionally, this approach would signi"cantly increase the
computational workload. We will compare these methods in
our evaluation in Section 6.
At the bottleneck of the UNet, we get the 1024-channel

audio vector and 1024-channel IMU vector with pretrained
LIMU-BERT. We concatenate these two vectors to form a
2048-channel vector along with the "rst dimension. Then
we use a series of 3 × 3 convolutional layers to process this
vector to maintain the original 1024-channel size. The expan-
sive path of the UNet is symmetric to the contracting path,
with each upsample layer concatenating the corresponding
encoding layer’s output.

The rationale of the fusion block is that by combining the
high-level information from the IMU datawith the audio data,
we can create a more informative embedding vector with
high dimensional representation, which can enhance the
e!ciency of the subsequent expansive path. Meanwhile, such
one-time fusion can reduce the computational complexity
on both the encoder and decoder. The entire framework is
illustrated in Figure 5.
We can express the process using the formula below as

shown in Equation 2. Here, � represents the encoder, � de-
notes the IMU feature extractor,  is the kernel, 5 indicates
the non-linearmapping, and# is the number of encoding lay-
ers. By incorporating the e#ort representation at the highest
dimension, each upsample layer can consider this informa-
tion and adjust the weights accordingly. The loss function in
this reconstruction phase is the mean squared error between
the reconstructed spectrogram and the ground truth, in order
to minimize the di#erence between the two.
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Figure 7: ViT-based prediction.
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The results of the reconstruction are shown in Figure 6.
Notably, compared to the original maximal e#ort breathing
on the left, the generated spectrogram exhibits less noise
interference. This improvement enhances the system’s ro-
bustness across various environments.

3.4 PFT Indicators Prediction

In this section, we describe how to make accurate predictions
following the reconstruction of the maximum e#ort breath-
ing spectrogram. We utilize the state-of-the-art Vision Trans-
former (ViT) [14] as the backbone of our prediction model
for its proven record in image processing tasks. Following
the design rationale of ViT, we "rst divide the spectrogram
outputted by the previous module into several patches, with
each patch treated as a separate vector after linear projection.
The structure is illustrated in Figure 7. We then implement
a two-phase training strategy that includes a pretraining
and "ne-tuning phase. During the pretraining phase, the
model predicts all eight pulmonary function indicators, as-
signing equal weight to each during loss calculation and
back-propagation. Through this phase, we expect the model
to develop a general understanding of pulmonary function
prediction, after which we "ne-tune it over a few epochs to
optimize predictions for each speci"c indicator by adjusting
the corresponding weights. The following section discusses
these designs in detail.

3.4.1 RegressionModel Architecture. The backbonewe adopt
is the ViT architecture, a state-of-the-art general vision frame-
work [14]. We choose a transformer-based solution over a
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convolutional neural network (CNN) design because it is a
better "t for the properties of exhalations.

First, CNNs exhibit a strong inductive bias, particularly in
the locality and translation equivariance [64]. This feature
enables CNNs to capture local patterns e!ciently, which
also helps reduce model complexity and training di!culty.
However, for the reconstructed maximal e#ort breathing
spectrogram, global information is more critical, as exhala-
tion can last more than 6 to 8 seconds. Thus, CNNs struggle to
aggregate over distant audio moments in an image. The sec-
ond problem is about over"tting. As previously mentioned,
our datasets include diverse and inconsistent breathing pat-
terns across subjects, making it possible that the training set
may not include samples similar to those in the test set. If
our model focuses too much on the locality of the training
set, it may only learn features from homogeneous samples,
neglecting the sparse ones. Given these considerations, the
ViT architecture is more appropriate for the regression tasks
involving our heterogeneous datasets.

3.4.2 Pretraining Phase. In the "rst pretraining phase, we
employ a multitask learning strategy based on the trans-
former backbone. We modify the original ViT model to ac-
commodate our datasets. After feature extraction, we also
concatenate personal informationwith the embedding vector.
The 10-channel spectrogram and IMU data combine to form
a two-channel image representing maximal e#ort breathing,
fromwhich we need to extract pulmonary function test (PFT)
indicators. Although our target indicators are FVC, FEV1,
PEF, and FEV1/FVC, medical literature suggests that MEF75,
MEF50, MEF25, and MMEF also re$ect lung conditions and
are included in our datasets. Therefore, we implement an
8-head output as an 8-task learning scheme to predict these
eight values simultaneously. During the pretraining phase,
we assign equal weight to each output, allowing the model
to focus on general lung condition evaluation rather than
strengthening the prediction ability for any speci"c indicator.
Our entire model size is similar to the ViT tiny version;

however, we do not utilize any pretrained checkpoints from
ImageNet-1k [46] or ImageNet-21k [12]. The data domain
of ImageNet, which consists of abundant natural images,
is entirely di#erent from that of sound spectrograms. Fur-
thermore, ImageNet primarily focuses on classi"cation tasks,
while our goal is to predict accurate absolute values based
on the spectrogram. Thus, pretrained checkpoints are not
suitable for our scenario.

3.4.3 Finetuning Phase. After the pretraining phase, we pro-
ceed to "ne-tune the model to predict one speci"c value at
a time for a few epochs. In this step, we set the weight for
the current indicator to 1 and the weights for all others to
0.01, allowing the model to concentrate more on the current
prediction.

4 Implementation

In this section, we discuss the implementation of EasySpiro.
The hardware prototype and the corresponding ground truth
spirometer are shown in Figure 9.

Hardware. We separately discuss the implementation of
our sensor in two parts: the microphone and IMU. To imple-
ment earphones that can be embedded into an earphone, we
utilize MAX9813 [13] microphone ampli"ers embedded into
3-D printed earphone molds, because they o#er very tiny
packaging and a low-noise feature. For the audio card, we
adopt ALC4032 Serial digital audio solution [11]. The card
provides ADC 3.0 / UAC 2.0 protocols and supports 192kHz
sample rates, which is su!cient for our scenario. Compared
with other papers, our earphone solution can be plugged into
mobile or PCs directly without any other converter, making
it more convenient. In terms of the IMU sensors, the data
acquisition platform consists primarily of an STM32 micro-
controller (MCU) and two MPU6050 6-axis IMUs mounted
on the back of each of the two headsets. To minimize inter-
ference during movement, the control board is "xed to the
chest and connected to the IMUs using $exible circuit (FPC)
$at cables. Each IMU sample is 50 Hz and timestamps are
recorded for synchronization with each sound sample.
Software. As described in Section 3.1, we determine the

starting points and extract 12 seconds of data, resulting in
one audio channel and three-axis IMU data per ear. Con-
sequently, the input data is structured as two arrays with
shapes [(576,000, 2), (600, 6)]. The software of EasySpiro is
implemented using Python 3.9. We use Pytorch 1.15 to de-
velop deep-learning models. As for model training, we utilize
NVIDIA RTX A6000 GPU, and the optimizer is AdamW [30].
The reconstructed models are trained with 30 epochs. For
the indicator prediction model, we "rst pretrain it using 8
outputs, and then "netune it with the strategy mentioned in
Section 3.

Ground truth. Refering to EarSpiro [66], we also use the
UBREATH Spirometer System (PF680) [58] as our ground
truth collecting device.

5 Dataset Development

In this section, we discuss the dataset development in this
research. The development of this dataset is a collaborative
e#ort with a respiratory medical center. This dataset is open-
sourced1.

5.1 Dataset Overview

We recruited 50 participants, including 36 patients with var-
ious diseases and 14 subjects with unknown or no disease.
Among the patient population, there are 18 COPD or asthma
patients, six hypertension patients, and 22 patientswith other

1Dataset available at https://github.com/ERICXUCHI/EasySpiroDataset
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Table 1: Demographics of the subjects.

Stats
COPD/

asthma

Hyper-

tension

Before

surgery
Others All

Population 18 6 22 14 50

Age (years) 52.8 (18.8) 62.7 (11.5) 50.8 (13.1) 51.4 (14.3) 51.8 (15.0)

Height (cm) 168.4 (7.0) 164.9 (9.5) 163.7 (10.0) 165.4 (7.5) 165.2 (8.5)

Weight (kg) 64.6 (9.8) 73.8 (17.0) 60.1 (13.1) 66.0 (8.7) 63.6 (12.4)

BMI (kg/m2) 22.7 (2.7) 26.8 (3.8) 22.3 (3.7) 24.1 (2.9) 23.2 (3.6)

FVC (L) 3.8 (0.7) 3.0 (0.8) 3.3 (0.9) 3.1 (0.8) 3.3 (0.8)

FEV1 (L) 2.6 (0.7) 2.2 (0.4) 2.7 (0.7) 2.5 (0.9) 2.6 (0.7)

PEF (L/s) 6.3 (1.4) 5.6 (1.4) 6.7 (1.6) 6.4 (2.3) 6.4 (1.7)

FEV1/FVC 0.7 (0.1) 0.8 (0.1) 0.8 (0.1) 0.8 (0.1) 0.8 (0.1)

Format: mean (standard deviation)
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Figure 8: Details of demographics.

(a) EasySpiro hardware (b) Ground truth spirometer

Figure 9: Data collection setup.

diseases who have scheduled surgeries in the subsequent
weeks. Note that one patient can have one or more diseases.
Each patient contributes around "ve exhalation maneuvers
with various e#ort levels. Note that the average age of our
subjects is larger than 50, at which point one should conduct
PFT regularly. We tested our system using this abundant and
varied data to validate its feasibility. All COPD patients are
diagnosed with mild to moderate severity by senior doctors
and examination reports. We also obtained all participants’
PFT reports from a hospital medical device to ensure every
procedure was valid. Each participant receives 100 CNY2

compensation, and the whole experiment is approved by
the IRB of our institution3. All data collection procedures
are supervised by the doctors. The demography of the sub-
jects is shown in Table 1 and Figure 8, where the BMI (Body
Mass Index) indicates the degree of obesity, FVC (Forced
Vital Capacity) reveals the overall lung capacity and FEV1
(Forced Expiratory Volume during the "rst second) indicates
the severity of obstructive lung diseases [21]. The last metric,

2100 CNY ≈ 13.7 USD
3The Hong Kong University of Science and Technology HREP-2024-0309

FEV1/FVC, is an indication of the existence of obstructive
lung diseases.

5.2 Data Collection Procedure

The data are collected in a pulmonary function test room in
the medical center, which is a semi-open room. Therefore,
there would be outside television sounds, queuing machine
sounds, and other speech voices. We did not deliberately
separate our position from these real scenarios since we can-
not guarantee that there is an absolutely silent environment
in real use. During data collection, the user needs to wear
our customized earphones embedded with microphones and
IMU sensors and conduct PFTs. The hardware is shown in
Figure 9. First, we recruit the participants and explain the
purpose of the study using advertisements and posters, with
the help of both doctors and clinical sta#. After informed
consent and an introduction to this research, we collect the
subject’s anonymized demographic information, including
age, gender, height, weight, and medical history. We also
collect their PFT reports from the hospital.

The participants are then asked to wear the earphones and
perform PFTs. The participants are instructed to perform the
PFTs in a sitting position, with their backs straight and their
feet $at on the $oor. The participants are also asked verbally
to take a deep breath and then exhale as hard and fast as
they could into the mouthpiece of the spirometer. During
this time, we would not give them suggestions on how to
improve the PFT maneuvers, to ensure that they perform
the PFTs naturally with di#erent e#ort levels. At the last at-
tempt, the doctor would instruct them on the standard way
of conducting PFT, where they should try their best to inhale
and exhale in one breath, and we recorded the maximum
e#ort exhalation after they had learned the standard process.
After recording, we would compare each session’s PEF index
to ensure that the participant did not use maximum e#ort
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Table 2: Comparision with baselines.

Baselines SpiroSmart [28] ExhaleSense [42] EarSpiro [66] EasySpiro

Dataset★ Original Ours Original Ours Original Ours Ours

FVC 5.2% 22.3% -† - 9.9% 19.3% 8.1%
FEV1 4.8% 24.6% - - 7.8% 19.8% 7.1%
PEF 6.3% 25.8% - - 6.5% 10.3% 4.5%

FEV1/FVC 4.0% 15.4% 7.57% 17.3% 5.1% 16.3% 6.3%
★ The original dataset refers to the dataset used in the respective papers. As a comparison, we test the

performance of their techniques on our dataset, which contains mostly submaximal exhalation sounds.
†
Not provided in the paper.

during the previous sessions. The raw audio sampling rate
is 48k Hz, and the raw IMU signal sampling rate is 50 Hz.
We record each signal’s starting point and align them with
the Internet’s timestamp, whose error is less than one mil-
lisecond.Notably, the noise level in the room measured by a
sound level meter is about 60 - 70 dB, which is a typical in-
door environment, and the range of breathing sounds spans
42–105 dB, falling within the audio range of earphones.

6 Evaluation

This section will give a detailed evaluation of our system,
including a performance study, ablation study, robustness
study and demographics study. Note that since our partici-
pants’ lung conditions vary a lot, we also present our perfor-
mance at each sub-group in the performance study.

6.1 Evaluation Setup

We "rst set the evaluation metrics and baselines against
which we evaluate the performance of EasySpiro.

6.1.1 Performance Metrics. For all PFTs indicators, we em-
ploy Percentage Error in Equation 3 as our performance met-
rics, following the medical standard and previous works
[17, 28, 52, 66]. The percentage error is calculated as:

�AA>A =
|;014; − ?A4382C8>= |

;014;
× 100% (3)

6.1.2 Baselines. We select three state-of-the-art studies that
predict the PFT indicators based on breathing sounds as our
baselines. Since we do not have access to their datasets, we
re-implement their methods following the respective papers.

• SpiroSmart [28]. This study outlines key components
for feature extraction, such as envelope detection, spec-
trogram processing, and linear predictive coding (LPC).
After processing these features, machine learning re-
gression predicts all four lung indicators.

• ExhaleSense [42]. This research focuses on detecting
exhalation and extracting waveform features to predict
lung obstruction parameters, speci"cally FEV1/FVC.

After identifying the exhalation phase, the study com-
putes both temporal and spectral features from the
envelope signals, followed by the machine learning
regularized regression model.

• EarSpiro [66]. The authors "rst apply STFT and Mel
"lter bank to the raw audio signals. They then utilize
the energy pro"le of the Mel spectrogram to segment
the expiration phase. After selecting the corresponding
period, they design a CNN-GRU-based model for PFT
measurement.

Note that while their original datasets consist of maximal
e#ort breathing sounds, our dataset contains mostly sub-
maximal e#ort exhalation sounds. The performance of these
baselines on their original datasets and on our datasets are
shown in Table 2.

6.2 Performance Study

In this section, we evaluate EasySpiro’s general function-
ality. We "rst evaluate EasySpiro’s performance in predict-
ing the four target lung function indicators. Then, we test
EasySpiro’s performance when di#erent numbers of exhala-
tion samples are used.

6.2.1 Overall Performance. We use leave-one-subject-out
(LOSO) validation in this evaluation. The overall perfor-
mance is shown in Figure 10. The average percentage error
for FVC, FEV1, PEF, and FEV1/FVC is 8.08%, 7.12%, 4.50%, and
6.35%. The indicator errors are a little bit higher than simi-
lar works [52, 66]. This is because they require the subjects
to perform maximal e#ort breathing while we just adopt
submaximal e#ort in our scenario, a much easier and more
comfortable way to predict lung conditions. Furthermore,
we validate our system on various patients, including those
with COPD, asthma, high blood pressure, and other diseases.
A more detailed breakdown analysis will be shown later in
this section. Notably, medical-grade devices are generally
designed to tolerate a percentage error of up to 5% as docu-
mented in various studies and standards [3, 10, 18]. However,
an around 7% error rate has also been observed, which is
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Figure 10: Overall performance. (a)-(d) CDF plots. (e) Box plot.
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Figure 11: Impact of exhalation sessions.
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Figure 12: Ablation study.

consistent with the "ndings of previous research, as demon-
strated in Table 2.

6.2.2 Performance with Di!erent Session Numbers. As we
mention in Section 3.3.1, even though most patients are com-
fortable with conducting "ve PFT maneuvers, our system
needs to be robust for fewer sessions. To validate its perfor-
mance, we evaluate our system on three, four, and "ve ses-
sions separately. This result employs 10-fold cross-validation.
The comparison of each case is present in Figure 11. The
results show that even if we only utilize three sessions of
exhalation for each person, the percentage error is still ac-
ceptable. The reason is that during our reconstruction phase,
we augment enough samples with three, four, and "ve valid
sessions by masking other channels. In this way, our re-
construction model is empowered with a robust ability to
generate the maximal e#ort exhalation spectrogram even
with fewer breathing numbers.

6.2.3 System Latency. The following details outline the sys-
tem latency, as presented in Table 3. On the CPU, the total
processing time is approximately 3 seconds, whereas the
GPU achieves a signi"cantly reduced total time of about 0.5
seconds. However, since PFT is not a real-time task, moder-
ate delays are tolerable and acceptable, rendering the overall
system latency satisfactory.

Table 3: System delay (in ms)

Device Proc Recon Pred Total

CPU
1101.78

990.51 625.30 2717.59AUD IMU

474.44 627.34

GPU
471.00

4.74 8.54 484.28AUD IMU

465.07 5.93

Proc: Audio and IMU pre-processing. Recon: maximal e#ort

reconstruction. Pred: PFT indicator prediction.

6.3 Ablation Study

In this section, we present a comprehensive ablation study
to verify the contribution of each component in our pro-
posed model. The technique modules are divided into three
parts. First, we validate the function of spectrogram recon-
struction by using only raw, submaximal data to predict the
pulmonary function indicators. Second, since we claim that
we observe the IMU would contribute to containing e#ort in-
formation and leverage a self-supervised encoder to extract
features from the signals, we remove the specially-designed
IMU encoder or remove the IMU modality completely. Third,
since we use ViT as our backbone instead of a conventional
CNN-based network, we also compare these two frameworks’
performance. All results in this section adopt 10-fold cross-
validation.
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Figure 13: Demographic study - disease.
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Figure 14: Demographic study - age.
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Figure 15: Demographic study - BMI and gender.
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Figure 16: Impact of noise.

6.3.1 Impact of Spectrogram Reconstruction. Since we pro-
pose a two-phase learning scheme by "rst reconstructing
the maximal e#ort exhalation spectrogram and then pre-
dicting the lung condition based on the previous result, we
need to verify the e#ectiveness of the reconstruction module.
The comparison is shown in Figure 12. We can observe that
without reconstruction, the performance drops to a certain
degree. This is because, through the intermediate reconstruc-
tion process, we add a “supervised loss” by computing the
di#erence between the generative maximal e#ort breathing
spectrogram and real ones. By this means, we can provide
more information to guide the model in generating a proper
spectrogram and ultimately contribute to the prediction of
the "nal indicators. Additionally, this method is aligned with
the medical process, which increases the interpretability of
our design.

6.3.2 Impact of IMU. As we mentioned previously, we ob-
serve that the e#ort level from IMU signals would help the
"nal prediction. Thus, we systematically remove the IMU
modality or keep the signal but remove the encoder to vali-
date its contribution. The results are presented in the second
and third columns of Figure 12. It shows that without the
IMU modality at all, the PFT indicator prediction will have
large errors with the average error rate exceeding 20%. With
the introduction of IMU, the error rate is reduced. Further,
the error rate is reduced signi"cantly when using our IMU
encoder trained by the self-supervised pipeline. This result
proves the e#ectiveness of introducing IMU to guide the

PFT prediction and the superiority of our specially designed
IMU encoding method. A separate evaluation in terms of
the spectrogram reconstruction performance is presented in
Section 6.6.

6.3.3 Impact of ViT Architecture. We choose ViT because of
its great ability for global feature fusion. However, previous
works also claim for limited data, ResNet [20] may perform
better. Therefore, in this part, we compare the ResNet-based
architecture versus the ViT-based architecture. The compari-
son is also shown in Figure 12. This helps to prove that our
model could extract global information from the spectro-
gram more e#ectively. Moreover, since it’s easy for ResNet
to over"t, our model also shows the potential for various
data distribution.

6.4 Demographic Study

The demographics of our datasets are presented in Section 5.
This section demonstrates our system performance on di#er-
ent demographic groups. We evaluate our system in terms of
health condition, gender, age, and BMI value. Speci"cally, the
subjects are grouped into underweight (BMI<18.5), normal
(18.5<BMI<25), and overweight (BMI>25) according to the
international standard.

6.4.1 Subjects with Diseases. We "rst analyze the perfor-
mance of EasySpiro on the patient population in our dataset,
including COPD, asthma, hypertension patients, and other
patients with surgery scheduled in the subsequent weeks.
The result is shown in Figure 13. Since the COPD and asthma
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Figure 17: Spectrogram reconstruction performance.

patients’ lungs are obstructive more or less, their breathing
sounds are weaker than others. Therefore, the error in this
user group is slightly larger than that of others.

6.4.2 Age. The impact of di#erent ages on the indicators
prediction is shown in Figure 14. It suggests that the per-
formance of the elderly is worse than that of the young.
This is because most patients are concentrated in the aged
subjects, and the aged people often have weaker breathing
sounds, which are hard to detect. Moreover, since the elderly
always have insu!cient muscle strength, their IMU signals
are not so distinguishable compared with others, and their
own tremors could also a#ect the IMU sensors.

6.4.3 Gender and BMI. We also evaluate the performance
in terms of gender variation. The results are shown in Fig-
ure 15. We observe that there is a slight decline in perfor-
mance among the male subjects. Since most lung obstructive
patients are male, their overall predictions are not as accurate
as those of the female subjects.

For the BMI values, we separated all the participants into
three categories: underweight, normal, and overweight. The
details are displayed in Figure 15. We "nd that compared
with that of normal and underweight subjects, our system
tends to achieve higher accuracy on overweight subjects. We
analyze that most lung disease patients are very thin, thus
their BMI values should be below normal degree.

6.5 Robustness Study

The most important environmental factor in our scenario
is the ambient noise. As we mention in Section 3.3.2, the
generative maximal breathing spectrogram tends to exhibit
less noise interference. To verify our system’s robustness,
we divide our datasets into four environments, which are
a quiet room, a room with an air conditioner, a room with
a television on, and a room with others speaking. The rela-
tionship between SNR (Equation 4) and percentage error is
shown in Figure 16.

(#' = 10 · ;>610 (%B/%=) (4)

where %B is the signal power and %= is the noise power.
From this analysis, we could conclude that our system can

be resilient to environmental noise in the real world, and the
performance is almost una#ected.

6.6 Spectrogram Reconstruction
Performance

The metrics to measure its function are reconstruction loss
and the Structural Similarity Index (SSIM) [62], where we
compare the generative maximal spectrogram with the orig-
inal spectrogram. SSIM is a metric used to assess the quality
of digital images by measuring the similarity between two
images, and the formula is written as follows

((�" (G,~) =
(2`G`~ + 21) (fG~ + 22)

(`2G + `2~ + 21) (f
2
G + f2~ + 22)

(5)

where ` is the mean of the image, f is the standard deviation
of the image, and 2 is a constant. If ((�" is higher, the two
images aremore similar to each other. The evaluation result is
shown in Figure 17. This result indicates that the introduction
of IMU enhances the reconstruction performance, and the
use of the IMU encoder trained by self-supervised learning
further boosts the performance. This evaluation result is
aligned with that of Section 6.3.1.

7 Related Work

In this section, we review the research related to this paper.
They fall into two categories: mobile spirometry systems and
earphone-based sensing systems.

7.1 Mobile Spirometry Systems

Recent studies indicate that spirometry can be conducted us-
ing mobile devices, yielding reliable results. SpiroSmart [28]
was the "rst to utilize a mobile phonemicrophone tomeasure
lung function. Several other studies follow a similar approach,
using the sound of breathing combined with maximum e#ort
to conduct pulmonary function tests [17, 42, 56, 57, 66].

Some research focuses on analyzing the motion of breath-
ing under maximum e#ort. SpiroSonic [52] employs acous-
tic sensors to convert chest wall motion into lung function
indices. SpiroFi [72] captures chest wall movement from
variations in WiFi signals and interprets this data into lung
function indices. Han et al. [19] use millimeter-wave radar
for contactless sensing of chest and abdominal motion, re-
covering Expiratory Volume (EV) curves from the overall
motion data. Similarly, mmFlow [1] also employs millimeter-
wave technology to analyze the subtle vibrations produced
by air$ow when individuals breathe on the device’s surface.
Several studies explore the feasibility of creating a 3-D

model to predict lung conditions. Kaiser et al. [25] designed
a set of vortex whistles that generate sound frequencies
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proportional to air$ow speed, allowing the estimation of
the $ow-volume (F-V) curve by analyzing the frequency of
recorded expiratory sounds. Yin et al. [70, 71] developed a
mouthpiece with a speci"c airway tube, reconstructing the
human airway pro"le through analysis of re$ected acoustic
waves captured by a smartphone microphone, and extracting
features to assess lung function.
Additionally, some research utilizes cough, speech, or

other biomarkers to estimate lung health indicators [37–
39, 47, 48, 60, 67]. MMLung [36] integrates audio signal data
from multiple modalities and tasks to achieve notable per-
formance in lung function estimation. Cheng et al. [9] utilize
a cell phone’s motion sensor to classify GOLD (Global Initia-
tive for Chronic Obstructive Lung Disease) levels. However,
these solutions do not adhere to the gold standard PFT and
are unable to measure peak expiratory $ow (PEF) indicators.
In addition, there is a parallel study that tries to perform PFT
via natural speech sounds [8].

7.2 Earphone-based Sensing Systems

Headphones are lightweight devices, and many earphone-
based systems have been developed. These systems can be
categorized into three main areas: (i) health monitoring, (ii)
human-computer interaction (HCI), and (iii) authentication
and identi"cation.

Several earphone-enabled health monitoring systems have
emerged. Martin et al. [33] and Butkow et al. [7] utilize in-
ear microphones to measure heart rates by analyzing au-
dio features. Wang et al. [61] employed earbuds to detect
breathing phases, aiming to reduce user distraction. The
eBP system [6] measures blood pressure using PPG sensors.
Ferlini [16] demonstrated that in-ear PPG can accurately
detect vital signs, including heart rate (HR), heart rate vari-
ability (HRV), blood oxygen saturation, and respiration rate
(RR). For disease-speci"c monitoring, EarHealth [24] eval-
uates hearing health by analyzing ear canal geometry and
eardrum mobility. Additionally, EarWalk [23] uses common
wireless wearables to provide continuous feedback on gait
changes, helping to reduce knee stress.
In the "eld of HCI, some studies focus on recognizing

facial expressions [29, 51]. OESense is an acoustic-based in-
ear system for motion sensing, including step counting and
activity recognition. TeethTap [54] and EarSense [41] use
earphones to detect teeth movement for human-machine
interaction. JawSense [26] decodes unvoiced phonemes for
hands-free, privacy-preserving interaction.
For authentication and identi"cation, Xie et al. [68] in-

troduced TeethPass, which uses earbuds to collect occlusal
sounds from binaural canals for authentication. ToothSonic
[63] extracts multi-level acoustic features that re$ect intrin-
sic toothprint information, aiding in the authentication.

8 Discussion

In this section, we will discuss the limitations and potential
extensions of EasySpiro.

Large-scale deployment on COPD patients.While our
system generally exhibits strong performance, its accuracy
decreases slightly when utilized with COPD patients. Since
the lungs of COPD patients are partially obstructed, their
maximal exhalation $ow is slower and the sound is weaker
compared to that of healthy individuals. As a result, some
of their non-maximal breathing sounds may be inaudible.
This leads to a decline in accuracy when our system is used
exclusively for COPD patients. Therefore, future works shall
recruit a larger COPD population and conduct a large-scale
deployment to further evaluate the in-the-wild performance
of the design.

Inspiratory measurement.While the exhalation phase
provides more information than the inhalation phase, there
are also helpful indices such as Peak Inspiratory Flow (PIF)
and Forced Inspiratory Flow at 50% of Vital Capacity (FIF50).
However, our system focuses only on the exhalation phase
because the sound of inhalation is extremely weak and often
indistinguishable, especially for COPD patients. Even when
our microphones are placed in the ear, the waveform can be
buried in ambient noise in real-world settings. Therefore, we
omit inspiratory measurements and provide lung condition
indicators based solely on the expiratory phase.

9 Conclusion

This paper proposes EasySpiro, the "rst mobile spirometer
system built from commercial-o#-the-shelf microphones and
IMU sensors to predict lung condition indicators based on ar-
bitrary, non-maximal breathing e#ort. Particularly, EasySpiro
utilizes UNet-based spectrogram reconstruction techniques
to generate maximal breathing from submaximal ones en-
hanced by self-supervised IMU encoding. Then the system
leverages the state-of-the-art vision transformer backbone
to predict the lung function indicators. We collaborate with
a medical center and build a dataset that includes 50 subjects
with various health conditions to validate our system. The
experimental results show that EasySpiro achieves high ac-
curacy in real-world scenarios. Additionally, we open-source
the "rst PFT dataset with all real patients’ exhalation sounds.
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